From Evernote: |
802.11n and MIMOClipped from: http://www.dsprelated.com/showmessage/98298/1.php |
Spatial multiplexing requires MIMO antenna configuration. In spatial multiplexing, a high rate signal is split into multiple lower rate streams and each stream is transmitted from a different transmit antenna in the same frequency channel. If these signals arrive at the receiver antenna array with sufficiently different spatial signatures, the receiver can separate these streams into (almost) parallel channels. Spatial multiplexing is a very powerful technique for increasing channel capacity at higher signal-to-noise ratios (SNR). The maximum number of spatial streams is limited by the lesser of the number of antennas at the transmitter or receiver. Spatial multiplexing can be used with or without transmit channel knowledge. Spatial multiplexing can also be used for simultaneous transmission to multiple receivers, known as space-division multiple access. The scheduling of receivers with different spatial signatures allows good separability.
The number of simultaneous data streams is limited by the minimum number of antennas in use on both sides of the link. However, the individual radios often further limit the number of spatial streams that may carry unique data. The a x b : c notation helps identify what a given radio is capable of. The first number (a) is the maximum number of transmit antennas or RF chains that can be used by the radio. The second number (b) is the maximum number of receive antennas or RF chains that can be used by the radio. The third number (c) is the maximum number of data spatial streams the radio can use. For example, a radio that can transmit on two antennas and receive on three, but can only send or receive two data streams would be 2 x 3 : 2.
The 802.11n draft allows up to 4 x 4 : 4. Common configurations of 11n devices are 2 x 2 : 2; 2 x 3 : 2; and 3 x 2 : 2. All three configurations have the same maximum throughputs and features, and differ only in the amount of diversity the antenna systems provide. In addition, a fourth configuration, 3 x 3 : 3 is becoming common, which has a higher throughput, due to the additional data stream.[5]
802.11n is an amendment which improves upon the previous 802.11 standards by adding multiple-input multiple-output antennas (MIMO). 802.11n operates on both the 2.4 GHz and the lesser used 5 GHz bands. It operates at a maximum net data rate from 54 Mbit/s to 600 Mbit/s. The IEEE has approved the amendment and it was published in October 2009.[14][15] Prior to the final ratification, enterprises were already migrating to 802.11n networks based on the Wi-Fi Alliance's certification of products conforming to a 2007 draft of the 802.11n proposal.
0 comments:
Post a Comment